您现在的位置:桐乡数学网>> 小学版>> 教材分析>> 五年级>>正文内容

义务教育课程标准实验教科书《数学》五年级上册第六单元培训

点击数: 【字体: 收藏 打印文章 查看评论
 

义务教育课程标准实验教科书《数学》五年级上册培训
第六单元 统计与可能性
一、 教学内容
1.事件发生的可能性以及游戏规则的公平性,会求简单事件发生的概率。
关于“可能性”,本套教材分两次编排。首次是在三年级上册,让学生初步体验有些事件的发生是确定的,有些则是不确定的;第二次在本册。本单元内容是在三年级基础上的深化,使学生对“可能性”的认识和理解逐渐从定性向定量过渡,不但能用恰当的词语来表述事件发生的可能性大小,还要学会通过量化的方式,用分数描述事件发生的概率。
2.中位数的统计意义及计算方法。
学生在三年级已经学过平均数,知道平均数是描述数据集中程度的一个统计量,用它来表示一组数据的情况,具有直观、简明的特点。但是当一组数据中有个别数据偏大或偏小时,用中位数来代表该组数据的一般水平就比平均数更合适。让学生理解中位数的意义,会求数据的中位数,并且在统计分析中能根据实际情况合理选择适当的统计量来描述数据的特征。
二、教学目标
1.体验事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的可能性。
2.能按照指定的要求设计简单的游戏方案。
3.理解中位数在统计学上的意义,学会求中位数的方法。
4.会根据数据的具体情况,选择适当的统计量来反映数据的集中趋势。
三、编排特点
1.以学生熟悉的游戏活动和生活实际展开教学内容。
等可能性事件与游戏规则的公平性是紧密相联的,因为一个公平的游戏规则本质上就是参与游戏的各方获胜的机会均等,用数学语言描述即是他们获胜的可能性相等。因此,教材在编排上就围绕等可能性这个知识的主轴,以学生熟悉的游戏活动展开教学内容,使学生在积极的参与中直观感受到游戏规则的公平性,并逐步丰富对等可能性的体验,学会用概率的思维去观察和分析社会生活中的事物。此外,通过探究游戏的公平性,还可在潜移默化中培养学生的公平、公正意识,促进学生正直人格的形成。
在选材上特别注意联系学生的生活实际,教学中位数时,教材选取的掷沙包、跳远、跳绳等活动,都是学生几乎天天参与的游戏,可使学生在活动过程中完成数据的收集和整理,也便于教师组织教学。
2.经历引入中位数的必要性,突出中位数的统计意义。
中位数和平均数一样,也是描述一组数据集中趋势的统计量,但它和平均数有以下两点不同:一是平均数只是一个“虚拟”的数,即一组数据的和除以该组数据的个数所得的商,而中位数并不完全是“虚拟”数,当一组数据有奇数个时,它就是该组数据顺序排列后最中间的那个数据,是这组数据中真实存在的一个数据;二是平均数的大小与一组数据里的每个数据都有关系,任何一个数据的变动都会引起平均数大小的改变,而中位数则仅与一组数据的排列位置有关,某些数据的变动对中位数没有影响,所以当一组数据的个别数据偏大或偏小时,用中位数来描述该组数据的集中趋势就比较合适。
⒊ 由易至难,逐步深入,从旧知引出新知。
学生在前面已经学过平均数,知道平均数是描述数据集中程度的一个统计量,所以教科书在引入中位数时,就以平均数为参照物,说明当一组数据中有个别数据偏大或偏小时,用中位数来代表该组数据的一般水平就比平均数更合适。这样编排,不但新旧知识过渡自然,便于学生理解和掌握,而且通过对比更加清晰地阐明了中位数的统计意义。
在介绍中位数的计算方法时,教科书在编排上采取了由易至难,逐步深入的方式。如例4和例5,列出的一组数据都是7个,即奇数个数据,从而最中间的那个数据就为中位数,可直接在数据组中找出;然后把7个数据变为8个,最中间就有两个数据,引出当数据个数为偶数个时计算中位数的方法。
三、 具体编排
 
 
标 题 具体内容   
主题图、例1~例3 体验事件发生的等可能性以及游戏规则的公平性,会求简单的事件发生的概率。   
例4、例5   理解中位数的统计意义,会求给定数据的中位数;能根据实际情况选择适当的统计量描述数据的特征。 

1. 体验事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的可能性。
主题图
主题图通过呈现学生熟悉的校园活动场景,引入本单元的学习内容。目的是从学生已有的生活经验出发,使学生体会到在我们的身边就存在大量的等可能性事件,平时的游戏活动中也隐含着许多公平性的问题。
这里通过引导学生探究击鼓传花、足球比赛等活动中蕴涵的概率思想,特别要引导学生从事件发生的可能性这个角度去观察问题,引导学生说说这些游戏活动对参与的各方是否公平。
教学时应注意说明每个活动的游戏规则,提出相关的数学问题让学生讨论。应注意引导学生从事件发生的可能性以及游戏规则是否公平这个角度来思考问题,不要过分关注游戏、活动内容本身。
例1
   教科书呈现了足球比赛前用抛硬币来决定谁开球的场景,由小精灵提出问题“你认为抛硬币决定谁开球公平吗?”引出教学内容。设计目的是使学生理解随机抛掷一枚硬币时“出现正面和出现反面的可能性是相同的”,从而说明比赛的公平性。
   教学时,为使学生更直观感受,可先让学生小组合作做抛硬币试验,并做好结果记录(如:每个小组抛100次,分别算出正面朝上和反面朝上的频率)。在试验完成后,教师可让学生汇报本组得到的结果。针对有的小组得到的结果可能与理论上的概率值相差较大,教师可以把各个小组试验的情况汇总,再进行分析,就可使结果更加逼近理论值。同时说明:当试验的次数增大时,正面朝上的频率和反面朝上的频率都越来越逼近 。
做一做
这是一个简单的转盘游戏,学生在三年级时就已经接触过了,知道指针停在红色区域的可能性比停在蓝色区域和黄色区域的可能性都要大,所以判断“这样公平吗”对学生来说并不困难,教学的重点应放在小精灵提出的问题“怎样设计这个转盘才公平”上。
引导学生思考:指针停在红色区域的可能性是多大呢?实现对可能性的认识由定性感受到定量刻画的自然过渡。
为便于学生理解,教材把转盘平均分成了四份,其中红色区域占两份,蓝色区域和黄色区域各占一份,所以指针停在红色区域的可能性是 ,即 ,而停在蓝色区域和停在黄色区域的的可能性都是 ,从而说明这个转盘设计得不公平。在此基础上,教师可引导学生从等可能性的角度来重新设计这个转盘,即将转盘平均分成三部分,红、黄、蓝各占 ,就可保证游戏的公平性了。
练习二十
第3题,虽然橡皮各部分的材料是均匀的,但它的6个面大小不等,一个面的面积越大,投掷后朝上的可能性也越大,所以,小强设计的这个方案不公平。
例2
通过击鼓传花的游戏,让学生理解用几分之几来表示可能性的大小及等可能性。教学的难点在于让学生认识到基本事件与事件的关系,即花落到每个人手里的可能性与落到男生(或女生)手里的可能性的联系。为了直观展现可能性由 变为 这一过程,教学时可借助学生熟悉的转盘游戏来模拟本活动:把一个转盘平均分成18个区域,灰色区域代表男生,白色区域代表女生,灰白间隔,则例2的问题就转化为了指针停在灰色区域的可能性是多大,而这对学生来说就比较容易理解了。
做一做
又是一个转盘游戏,转盘表面被平均分成了8个部分,并着了红、黄、蓝3种颜色,分别占转盘表面积的 、 、 。教学时可先让学生观察转盘,认识到指针停在每一个小扇形区域的可能性都是 ,即基本事件的发生是等可能性的,然后再观察红、黄、蓝3种颜色各占几个小扇形,从而得出指针停在红、黄、蓝三种颜色区域的可能性。
转动指针80次,根据上面的结果,则指针大约会有30(利用80×  =30)次停在红色区域,这是利用概率知识来预测事件发生的结果。教学时应指出这是理论上的结果,因为随机事件的概率值是建立在大量重复试验的基础之上的,所以在实际转动80次时,有可能会偏离这个结果,这也是正常的。
练习二十一
第1题,①把9张数字卡片打乱顺序后摆在桌子上,随机抽取一张,抽到每个数字的可能性都是 ,而单数有1,3,5,7,9,共5个,所以抽到单数的可能性是 ,同理,抽到双数的可能性是 。可见,这个游戏对小芳而言是不公平的。②虽然游戏规则对小芳不利,但在一次或有限次试验中,小芳却不一定会输。③为了使游戏规则变得公平,可去掉一张单数卡片或再增加一张双数卡片,从而使得摸到单数和摸到双数的可能性都是 ,就实现了游戏的公平。
第2题,这是一个开放题,教学时可放手让学生去设计,只要他们的方案满足红色区域占整个转盘面积的一半,绿色和黄色区域各占整个转盘面积的 就行。
第3题,①转盘被均匀地分成了10个区域,指针停在任一区域的可能性都相等,均为 。当甲转动指针时,乙能猜对指针停在哪一区域(即乙获胜)的可能性是 ,而乙猜错(即甲获胜)的可能性是 ,所以这个游戏规则对乙来说是不公平的。
②虽然乙获胜的可能性很小,但根据随机事件的特性,小概率事件也是会发生的,所以在一次试验中并不能断定乙就一定会输,只是说明乙输的可能性很大,尤其是在该游戏大量重复进行试验时,这一点会表现得更明显。
③针对教材中列出的四种猜数方法,第一种:不是2的倍数的数有1,3,5,7,9共5个,因而乙猜对的可能性是 ;第二种:不是3的倍数的数有1,2,4,5,7,8,10共7个,因而乙猜对的可能性是 ;第三种:大于6的数有7,8,9,10共4个,因而乙猜对的可能性是 ;第四种:不大于6的数有1,2,3,4,5,6共6个,因而乙猜对的可能性是 。比较四种方法后发现,乙选择第二种方法获胜的可能性最大,所以乙应选择第二种。特别要指出的一点是,第三种和第四种方法在概率论里称为 “互补事件”,两个互补事件发生的概率之和等于1。所以,如果我们已经知道了第三种方法获胜的可能性,第四种方法获胜的可能性就可直接通过减法计算求得。
④因为这个游戏只有甲、乙两个人参与,所以公平的游戏规则应是甲乙双方获胜的可能性都为 ,设计规则时只要满足这个条件即可。如可让乙猜指针停在奇数或偶数上,或猜指针停在1~5这5个数字上等等。
例3及“做一做”
例3要求出小强获胜的可能性是多大,首先应找出小丽和小强玩“石头、剪子、布”的所有可能的结果。
从表中可见,一共有9种可能的结果,因为每人出石头、剪子、布的可能性都相同,所以上述9种结果出现的可能性都相等,均为 。其中小强获胜的结果有3种,小丽获胜的结果有3种,平的结果也有3种,故小强获胜的可能性是3× = ,同理,小丽获胜的可能性也是 ,所以用“石头、剪子、布”来决定谁跳是公平的。
为了不重复、不遗漏地列出所有可能的结果,教学时可让学生结合以前学的排列组合知识进行思考。在找出游戏的所有可能结果后,应引导学生认识到每种结果出现的可能性都相等。
做一做。
为了求摆出的三位数是单数的可能性,首先应罗列出3,5,6这三张卡片能够摆出的所有三位数, 6个三位数中单数有4个,双数有两个,所以摆出的三位数是单数的可能性是 ,是双数的可能性是 。教学时,应注意引导学生利用以前学习的排列组合方法,以保证在罗列时做到不重复不遗漏。
除了列举法,也可根据单数和双数的特性来分析问题。判断一个数是单数还是双数主要看这个数的个位,若个位上的数字是单数,则该数就是单数,反之,则说明该数是双数。现在来看3,5,6这3个数字,3,5都是单数,只有6是双数,所以当3或5都放在个位时,组成的三位数就是单数,只有当6放在个位时,组成的三位数才是双数,因而摆出的三位数是单数的可能性是 ,是双数的可能性是 。
由以上的分析可以看出,这个游戏规则对猜“摆出的三位数是双数”的一方不利,所以游戏不公平。
练习二十二
第1题,从4张数字卡片中任意抽取两张,这是一个组合问题,共有 种,分别是:①2,3;②2,7;③2,8;④3,7;⑤3,8;⑥7,8。其中第一种和第五种情况下两数的乘积既是2的倍数又是3的倍数,所以可排除,即有效的组合有4种。在这4种组合中,乘积是2的倍数的有3种(2,7;2,8;7,8),乘积是3的倍数的有1种(3,7),所以这个玩法不公平。
根据已有的规则,为了使游戏公平,则必须换掉卡片2或卡片8,并且新加的数字卡片应满足如下条件:该数字是不能被3整除的奇数,如5,11等。教学时,应注意说明当两个数的乘积既不能被2整除又不能被3整除时,也要重来。
第2题,投掷一粒骰子,朝上的数字有6种可能的结果,根据乘法原理,同时掷两粒骰子时,则可能出现的结果共有6×6=36种,并且这36种结果出现的可能性都相等,均为 。与此对应,36种情况下两个数字的和的分布情况如下表阴影部分所示:
 
 1 2 3 4 5 6   
1 2 3 4 5 6 7   
2 3 4 5 6 7 8   
3 4 5 6 7 8 9   
4 5 6 7 8 9 10   
5 6 7 8 9 10 11   
6 7 8 9 10 11 12 
从表中可见,和是单数的结果有18种,所以和是单数的可能性是 ,同理,和是双数的可能性也是 ,故这个游戏对双方是公平的。
第3题,本题是开放的,学生可根据自己的生活实际,从熟悉的游戏、活动中寻找题材,先探究这些游戏、活动的规则是否对比赛各方都公平,如果不公平,则根据等可能性思想,对游戏的规则进行矫正,或重新制定,直到使其满足公平性。
2.理解中位数的统计意义,会求数据的中位数;了解中位数与平均数的联系和区别,会根据数据的具体情况合理选择统计量。
例4
通过解决“用什么数表示第3组同学的掷沙包水平比较合适”这一问题,引出了中位数的概念。在第一学段,学生已知道用平均数来描述一组数据的总体情况比较方便和适用,但平均数与一组数据中的每个数据都有直接的关系,任意一个数据大小的变化都会对平均数值产生影响,从而很自然地引入中位数的概念。
教学时,应把握好以下几个层次:一是引入中位数的必要性;二是定义中位数的概念时,要突出中位数的统计意义;三是阐明中位数与平均数各自的特点和适用范围。
教学时应把中位数特点讲清楚,让学生明白:把一组数据按大小顺序排列后,最中间的数据就是中位数,它的优点是不受偏大或偏小数据的影响。如在本例中,因为有两个特同学的成绩太高,严重偏离了大多数同学的水平,这时用中位数来表示第3组同学掷沙包的一般水平就比较合适。另外,计算中位数前首先应将该组数据按照大小顺序进行排列,再找出处于最中间位置的数据。
最后,教师可适当小结一下,使学生认识到平均数与中位数都是反映一组数据集中趋势的统计量,但针对具体的一组数据来说,则应根据数据组中各个数据的分布情况,合理选择适当的统计量。如当一组数据中某些数据严重偏大或偏小时,就最好选用中位数来表示该组数据的一般水平。
例5
设计本例的目的是使学生进一步理解中位数的概念,掌握求中位数的方法,另外更重要的一点是让学生体会中位数在统计学上的作用。
本例呈现了几名男生的跳远成绩,并从平均数和中位数两个角度对该数据组进行了分析,结果表明用中位数代表这组成绩的一般水平更合适。针对给定的一组数据,判断某个统计量优劣的标准就是该统计量是否包含了数据组足够多的信息量,是否很好地反映了该组数据的大部分特征,也即该统计量蕴涵了更多的有关该组数据的信息。对例5而言,7名男生跳远成绩的平均数是2.96,中位数是2.89,分析发现有5名男生的成绩都低于平均值,从而说明在这里用平均数来代表该组成绩不太合适,应选用中位数。为让学生更完整地掌握求给定一组数据的中位数的方法,在本例最后,有意将原数据组的7个数据变成了8个,以向学生介绍当一组数据有偶数个数据时中位数的求法。
教学时可让学生通过小组讨论的形式来分析平均数和中位数的特点,并引导他们结合本例的实际情况,以做出合理的选择。
练习二十三
第1题,教学时,可以先让学生根据7名同学的成绩估一估他们跳绳的一般水平大约应是多少,然后再分别计算出平均数和中位数,比较后再选择合适的统计量。
第2题,本题的编写意图有两点:一是使学生认识到当一组数据中没有特别偏大或偏小的数据时,平均数和中位数这两个统计量都能较好地反映该组数据的统计特征;二是让学生初步理解中位数与平均数的大小关系:当一组数据中所有比中位数小的数与中位数之差的和小于所有比中位数大的数与中位数之差的和时,中位数就比平均数小,反之中位数就比平均数大。
第3题,通过展示两个公司职工工资情况统计表,说明在生活中要特别警惕平均数的误用,要看清在平均数掩盖下的事实真相,以帮助我们在生活中作出科学合理的选择。
普通职员在公司里占绝大多数,所以他们的工资更能代表公司职工工资的一般水平,这实际上也是工资统计表里的中位数,从而也与前面学习的用“中位数代表全体数据的一般水平更合适”相一致。用平均工资来反映该公司职工工资的一般水平并不合适。
如果爸爸想应聘公司的员工,从工资水平的角度考虑应该选择甲公司,因为甲公司普通职员的工资是1200元,高于乙公司的1100元。
第4题,这是一道实践活动题,同时又是一道开放题,可让学生小组合作开展调查活动。首先是确定需要调查的内容,如调查本班同学视力情况,调查一个年级学生的身高、体重等,并制定好相应的调查计划,作好统计表,然后在全班(全年级或全校)的同学中进行调查。调查后把结果反映在设计好的统计表里,由此求出所收集数据的中位数,特别应让学生说说中位数的意义。例如在视力情况的调查中,如果中位数显示的视力结果是没有近视,则说明全班同学有一半以上都没有近视,反之则说明全班同学患近视的人数超过了一半。
五、教学建议
1.注重学生对等可能性思想的理解,淡化纯概率数值的计算。
在自然界和人类社会中存在两类不同的现象:确定性现象(即必然事件和不可能事件)和随机现象(即不确定事件)。概率论就是研究随机现象的规律性的数学分支。在小学阶段设置简单的“概率”内容,主要是为了培养学生的随机思维,让其学会用概率的眼光去观察大千世界,而不仅仅是以确定的、一成不变的思维方式去理解事物。因此,在可能性知识的教学中,应注意加强对学生概率素养的培养,增强学生对随机思想的理解,而不要把丰富多彩的可能性内容变成了机械的计算和练习。
2. 加强学生对中位数在统计学意义上的理解。
中位数和平均数一样,也是反映一组数据集中趋势的一个统计量。教学时应注意结合学生已经很熟悉的平均数,对比教学,以帮助学生厘清两者的联系和区别,使他们明白:平均数主要反映一组数据的总体水平,中位数则更好地反映了一组数据的中等水平(或一般水平)。
在教学中,教师应选择恰当的数据组,以反映中位数在统计学上的意义和价值,在与平均数的对比中体现中位数的特点。如例4、例5的数据组中,因个别数据严重偏大,影响到平均数也偏大,导致平均数不能很好地代表该组数据的总体水平,而中位数的优势正好能够避免一些偏大或偏小数据的影响,因而在这样的场合中,中位数就能很好地反映一组数据的一般水平。
3. 加强动手操作,提供自主探索的空间。可以结合学生熟悉的游戏、活动(如掷硬币、玩转盘、摸卡片等),让学生亲自动手试验,在试验中直观体验事件发生的可能性,探究游戏规则的公平性与等可能性事件的关系等,使其经历知识的形成过程。
 


作者: 来源:黄牛课件 发布时间:2010年07月18日
相关信息
没有相关内容
用户信息中心